
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
TERRAIN LEVEL OF DETAIL IN FIRST PERSON-

GROUND PERSPECTIVE SIMULATIONS

By

Victor L. Spears III

March 2002

 Thesis Advisor: Michael Capps
 Second Reader: Michael Zyda

This thesis done in cooperation with the MOVES Institute
Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2002
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE
Terrain Level Of Detail In First Person-Ground Perspective Simulations

5. FUNDING NUMBERS

6. AUTHOR (S)
Victor L. Spears III

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the U.S. Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Army Game Project at the Naval Postgraduate School is utilizing Epic’s Unreal game engine to create a

realistic first person infantry simulation. The project involves both indoor and outdoor spaces, including terrain datasets

larger than normally supported by the Epic engine. While there has been extensive research relating to terrain rendering

algorithms, they are unsuitable for this system due to hardware requirements, task limitation, or inefficient memory

management.

These limitations can be addressed by modifying the original terrain algorithm to include multiple levels of detail

for complex terrain. This method raises new issues with projected textures, transparent textures, and multi-resolution

rendering; therefore the implementation technique includes resolution for these concerns as well. The Epic world editor

was also modified to enable world designers to control of these levels of detail.

Performance tests have shown that this terrain level of detail system significantly improves display times, thereby

allowing greater terrain complexity while maintaining interactive frame rates. Rendering times in environments with small

terrains improved almost 40%, while large complex terrain environments (km2 at 1m resolution) fared even better.

14. SUBJECT TERMS: Terrain, Simulation, Game Engine, Mesh 15. NUMBER OF

PAGES
75

 16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The Army Game Project at the Naval Postgraduate School is utilizing Epic’s

Unreal game engine to create a realistic first person infantry simulation. The project

involves both indoor and outdoor spaces, including terrain datasets larger than normally

supported by the Epic engine. While there has been extensive research relating to terrain

rendering algorithms, they are unsuitable for this system due to hardware requirements,

task limitation, or inefficient memory management.

These limitations can be addressed by modifying the original terrain algorithm to

include multiple levels of detail for complex terrain. This method raises new issues with

projected textures, transparent textures, and multi-resolution rendering; therefore the

implementation technique includes resolution for these concerns as well. The Epic world

editor was also modified to enable world designers control of these levels of detail.

Performance tests have shown that this terrain level of detail system significantly

improves display times, thereby allowing greater terrain complexity while maintaining

interactive frame rates. Rendering times in environments with small terrains improved

almost 40%, while large complex terrain environments (km2 at 1m resolution) fared even

better.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. OVERVIEW...1

A. THESIS STATEMENT..1

B. PROBLEM/MOTIVATION ..1

C. METHODOLOGY...1
 1. Understanding Unreal Engine ..1
 2. Determining Level Of Detail Method ..2
 3. Integrate Level Of Detail Into Unreal ..2
 4. Optimize And Modularize..2
 5. Head Turning Prediction Methods ...3
 6. Develop & Integrate Head Prediction Algorithm...3

D. THESIS ORGANIZATION ...3

II. BACKGROUND & RELATED WORK ...5

A. INTRODUCTION..5
 1. Terrain ..5
 2. Level Of Detail ...5
 3. Unreal Terrain ..8
 4. Predictive Head Movement ..9

B. GAME TECHNOLOGY INTRODUCTION...10

C. RELATED WORK IN TERRAIN GENERATION10
 1. Triangular Irregular Networks..11
 2. Quad Trees ...12
 3. Real-Time Optimally Adaptable Meshes ...14
 4. Terrain Paging ..15

D. SUMMARY ...16

III. ARCHITECTURE & DESIGN ..17

A. EPIC'S UNREAL TERRAIN ARCHITECTURE ...17
B. LEVEL OF DETAIL MESH DESIGN..19
C. SCALABILITY..20
D. MESH SWAPPING ...21
E . PREDICTIVE SWAPPING AND PAGING ...21
F. SUMMARY ...22

 vii

IV. IMPLEMENTATION ...23

A. FUNCTION WALK-THRU...23
B. LAYER DECLARATION/INITIALIZATION ...24
C. LEVEL OF DETAIL MESH CREATION ..25
D. DISTANCE TO SECTOR..27
E. MESH RENDERING DETERMINATION...28
F. ALPHA BLENDING ...31
G. SUMMARY ...32

V. EXPERIMENTS AND ANALYSIS ...35

A. DETERMINING LOD DISTANCE ..35
B. IMAGE INTEGRITY...36
C. MESH TRANSITIONS..39
D. FRAME RATES...41
E. SUMMARY ...44

VI. HEAD TURN FREQUENCY PREDICTABILITY ...47

A. HYPOTHESIS..47
B. PREPARATION ..47
C. EXPERIMENT...48
D. RESULTS...50
E. SUMMARY OF EXPERIMENT...51

 F. SUMMARY ...52

VII. CONCLUSIONS AND FUTURE WORK...53

A. CONCLUSIONS ..53
B. FUTURE WORK ...54
 1. Game-Tme Terrain Manipulation ..54
 2. Multiple LOD ...54
 3. Head Turning Prediction ..54
 4. Smaller footprint...54

LIST OF REFERENCES..55

INITIAL DISTRIBUTION LIST ...57

 viii

 LIST OF FIGURES

Figure 1. LOD example with three stop signs ...6
Figure 2. Quad tree example..12
Figure 3. Splitting and merging of a triangle utilizing the ROAM algorithm14
Figure 4. NPSNETV terrain paging...16
Figure 5. Heightfield converted to x,y coordinates with associated z values18
Figure 6. Terrain rendering process ...19
Figure 7. Image of terrain triangle mesh..20
Figure 8. Stitching patterns ..21
Figure 9. Rendering process with functions ..24
Figure 10. Declaration of layers for LOD..25
Figure 11. Image comparison of low and high-resolution layer mesh25
Figure 12. Hill break down ..26
Figure 13. Gapped terrain ..27
Figure 14. Center point initialization and implementation ..28
Figure 15. Enumerated type for the determination of the layer to be rendered28
Figure 16. Distance check..29
Figure 17. Layer parsing selection...30
Figure 18. Alpha blending problem...31
Figure 19. Corrected alpha blend for smooth transitions between textures.............................32
Figure 20. Distance to sector ...35
Figure 21. Resolution layers ..36
Figure 22. Open grassy map ..37
Figure 23. Hill resolution test ..38
Figure 24. Fractured terrain test...38
Figure 25. Close up of fractured terrain test ..39
Figure 26. Aerial view of large map ..39
Figure 27. Hysteresis test...40
Figure 28. Apparent hysteresis ..41
Figure 29. Frame rate test ..42
Figure 30. Modified map for testing ..43
Figure 31. Large terrain map ...44
Figure 32. Morbias map...49
Figure 33. Command map..49
Figure 34. Tempest map ..50

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1: Modified map for testing……………………………………………………….43
Table 2: Large terrain map……………………………………………………………….44

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF ACRONYMS AND ABBREVIATIONS

2D Two Dimensional
3D Three Dimensional
AGP Army Game Project
BOTS Computer-controlled avatar
DTED Digital Terrain Elevation Data
FPS Frames per Second
GHz Giga-Hertz
LOD Level of Detail
MB Mega-byte
MOD Game Modification
RAM Random Access Memory
ROAM Real-time Optimally Adapting Mesh
TINs Triangulated Irregular Networks

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGEMENTS

I would like to thank Dr. Michael Capps for his guidance, support and enthusiasm

for this thesis. The entire AGP programming staff was very helpful in this endeavor and

I would like to thank Christian, Martin, and Steve for their assistance and patience for my

million and two questions.

Many thanks to the weekend basketball players for providing an outlet for

frustration and sweat.

Finally, I would like to thank my family, Victoria and Paul, for putting up with

the long hours and time away. Your understanding, patience and love really made a

difference.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. OVERVIEW
A. THESIS STATEMENT

 Tailoring terrain level of detail algorithms to first person, ground following

perspective three- dimensional virtual environments allows for visualization of more

complex terrain while preserving interactive frame rates.

B. PROBLEM/MOTIVATION

 Terrain generation and visualization is not only wide and varied but also difficult

when the premise requires accurate representations of scenery at high frame rates with

dynamic viewpoints. The Army Game Project (AGP) (http://wargamelab.com) is an

ongoing endeavor that makes use of large terrain sets for its first person ground

perspective war game. However, the large terrain sets that are required degrade

performance, disrupting the interactive frame rates and game-play.

 Epic’s Unreal engine serves as the underlying architecture for the project

(http://unreal.epicgames.com). The engine maintains many desired features and facilitates

the necessary extensibility in order to incorporate additional features. One problem with

the current engine configuration lies in that it is not designed to handle multiple levels of

detail in its terrain display system. Instead, the engine dictates a single terrain resolution

to bypass possible performance disruptions or complexities of scene management. This

method for rendering terrain does not provide the AGP with the flexibility it requires in

order to achieve its mission. Thus, the motivation for this thesis was to provide the AGP

with an adaptable terrain display system that will enable it to achieve its goal of an

immersive, realistic combat game.

C. METHODOLGY

 With a goal of determining the best approach by which to develop an adaptable

terrain display system, the Unreal Engine was first studied. Once the underlying

components were understood, then the appropriate level of detail method was

ascertained. Finally, the chosen method was integrated into the rest of the Unreal game

engine and optimized for clear understanding.

1. Understanding Unreal Engine

Understanding how the Unreal engine functioned and created terrain was

fundamental in this endeavor. C++ is the language used for the underlying graphical and

 1

abstraction layer for the game. Unreal script, a Java like programming language created

by Epic, provided all the required functionality of game-play. Though slower than C++

by a factor of 20, all game-play utilities reside in the Unreal script due to its usability,

modularity and intuitive style.

All pertinent terrain generation code exists in over 2000 lines of C++ engine code

across two files. Epic’s terrain generation algorithm involved preprocessing a terrain

mesh and then constant refreshes of the mesh during game runtime. As described in detail

in the implementation chapter of this thesis, a majority of the changes were made in the

preprocessing of the terrain mesh.

Understanding the Unreal editor was another essential part of understanding the

game engine for the simple fact that a majority of the terrain display code was shared for

game-play and creating/editing terrain and maps. Understanding the functionality of the

editor was necessary in order to create test maps. Since the game-play and editor code

was intertwined, delineating between the two in the engine was required to ensure that

modifications would be transparent to the level designers (map creators) during creation

and editing.

2. Determining Level of Detail Method

There are a variety of terrain optimization techniques available for LOD

management of triangular meshes. An exhaustive study of these techniques, referenced

against the existing Unreal terrain generation algorithm, is provided in the related work

chapter of this thesis. This study was performed in order to examine not only the

feasibility of incorporating level of detail into the engine, but also the feasibility of

using one of the related works as a foundation for the upgrade.

3. Integrate Level of Detail into Unreal

 Once the correct level of detail algorithm was determined and tested, its

integration into the AGP was the next step. Obviously, the goal of the integration was to

be seamless to level designers, programmers and users alike. This step involved tests for

every map to ensure the integration did not produce any unwanted artifacts.

4. Optimize and Modularize

 Upon completion of the integration, further optimization was performed to ensure

the least amount of memory usage and the quickest time to load maps. This step also

 2

involved modularizing the algorithm for easy inclusion, exclusion, or replacement with

alternate solutions.

5. Head Turning Prediction Methods

 An experiment was run in order to test the possibility that a prediction model

could be discerned concerning the frequency of head turning by users during game play.

If existent, a prediction model could be used to further optimize level of detail by loading

terrain when required and excluding it when not necessary according to the predictive

tendency of users.

6. Develop and Integrate Head Prediction Algorithm

 If a prediction model could be ascertained, then developing an algorithm for the

prediction model was the next step. The algorithm needed to be generic in order to

correspond to all users, and once integrated, could not degrade the performance of game

play. Anything short of meeting those two requirements would render the algorithm

unsuitable for inclusion into the AGP.

D. THESIS ORGANIZATION

 The remainder of this thesis is organized as follows:

 Chapter II: Previous work. Chapter II provides the reader with an introduction

into the theory behind this thesis. It also includes an analysis of related work in this field.

 Chapter III: Architecture and design. Chapter III provides the layout for the

architectural and design approaches taken in order to incorporate level of detail in the

terrain generation.

 Chapter IV: Implementation. Chapter IV provides an in-depth description of

procedures used to implement level of detail in terrain generation.

 Chapter V: Experiments and analysis. Chapter V provides the empirical data in

order to support or refute the feasibility of this work.

 Chapter VI: Head Turn Frequency Predictability. Chapter VI provide the

results of a test for the feasibility of the predictability of head turning frequency in a first

person-ground perspective simulation.

Chapter VII: Conclusions and future work. Chapter VI provides a summary of

the benefits of this work, possible future work in this area, and recommendations.

 3

THIS PAGE INTENTIONALLY LEFT BLANK

 4

II. BACKGROUND & RELATED WORK
A. INTRODUCTION

 This chapter provides the reader sufficient background in order to comprehend the

contributions and limitations of this work. The concepts of terrain, level of detail, the

existing Unreal terrain code, and predictive rendering are defined to provide a baseline to

understand the remainder of this work. Finally, a synopsis of related works is presented to

assist in defining the problem space.

1. Terrain

Terrain involves representing a type of landscape by describing a combination of

like things such as vegetation, surface properties and 3D models (Geomantics, 2001).

Typical terrains include rolling grass hills, mountain ranges, valleys, rivers, etc. They can

be modeled to resemble specific places or randomly generated to be non-specific. The

terrain examined in this thesis represents both existent and non-existent areas.

A typical storage technique for terrain is in the use of a heightfield, which is an

array of integers that represent heights (i.e. z value) at specific x and y coordinates that

correspond with the index of the associated height. For example, the digital terrain

elevation data, or DTED, saves its terrain representations in the heightfield format with

associated headers in the files to delineate geographic location in the world (Pike, 2000).

Keeping the terrain information as short integers stored in binary text files minimizes the

overall storage. A brief synopsis of related terrain work can be found in the related work

section of this chapter.

2. Level of Detail

Accurate terrain representations such as the U.S. Geological Survey’s Digital

Elevation Models contain over one million points (Reddy, 2000). The time required to

render terrain of that magnitude does not provide for smooth, real time interactive

simulations or virtual environments. The most common method for altering the terrain

model while maintaining its integrity is Level of Detail (LOD).

“LOD is the technique of changing a model’s complexity based upon some

selection criteria, such as distance form the viewpoint or projected screen size.” (Reddy,

2000) In essence, several altered versions of the same model are created in varying

complexity to be displayed at varying distances from the viewpoint. The goal involves

 5

maintaining or speeding up rendering time by representing objects with less detail when

far away. For example, the signs in Figure 1 below would suffice to represent the sign at

three distances, with the right most image near the far clipping plane and the left image at

the near clipping plane. The actual distances at which to swap the images is designer

dependent.

Figure 1. LOD example with three stop signs. The sign with “STOP” completely printed is for the

highest level of detail on down to the sign with no lettering used for the lowest level of detail.

 The importance of LOD in graphics intensive applications lies in the time to

render the images per frame, and the amount of bandwidth required to transmit the

images. These concerns must be addressed in terrain algorithms if both visually stunning

images and practicality in speed and composition are to be met. "It seems you can't shake

a stick in the world of terrain visualization without hitting a reference to Level of Detail

(LOD) Terrain Algorithms." (Turner, 2000)

 Using multiple images to represent a single object at varying perspectives is a

very expensive ideal in terms of storage and processing. First, there is the physical

memory required to store every single image for use in the scene. For very detailed and

complicated models, this memory requirement could be very demanding. Second is the

virtual memory costs required to have multiple images for quick swapping to avoid any

lag by accessing physical memory. Finally, processing the images for intelligent caching

requires algorithms capable of quickly determining which images need to be swapped or

kept.

 6

 Besides the expense involved with storage, rendering and transmission, another

concern is hysteresis, or the “popping" effect. In order to speed up rendering time, many

algorithms use different pictures representing a single object for differing distances

between the object and viewpoint of the user. Each picture is displayed with just enough

detail on further objects to maintain the integrity of the object. Just as a person perceives

wrinkles and fine facial hairs, on an approaching person, the closer an object on the

screen gets to the viewing camera, more details can be perceived, and thus required to

accurately represent it. The popping effect occurs when detail levels are swapped in a

manner that is noticeable to the user. Ideally the transition should be transparent to the

user, where there are no noticeable pops, or drastic differences. So, Figure 1 would

require additional processing to ensure the user perceives only a single stop sign no

matter the distance from it.

 Eliminating hysteresis from LOD transitions is essential for any algorithm that

requires the persistence of immersion and presence. One method for eliminating

hysteresis involves the use of geomorphs which smoothly interpolates the geometry of

the terrain mesh in order to correct for the “popping” (Hoppe, 1996). Though the

technique accurately applies for smooth LOD transitions at runtime, the algorithm’s

intent was designed for a “visual flythrough simulation.” Flight simulations are not easily

adaptable to rapid view changes of a first person, ground following application whose

terrain mesh was preprocessed and thus not alterable during runtime.

 Inherent in all the techniques for LOD thus far mentioned are the notions of

discrete and continuous LOD. Discrete LOD is the creation of multiple images to

represent the same model at different resolutions like the above stop signs. The problem

with discrete LOD is hysteresis, which alpha LOD attempts to solve. Continuous LOD

involves the manipulation of a model’s or terrain’s geometry as geomorphs does.

 Discrete LOD appears to be the method that meets the stated requirements for this

work rather than continuous LOD for a number of reasons. One reason is that continuous

LOD involves intensive calculations for determining vertex manipulation. Another reason

is that the modern bus in a computer is too slow to transmit the continuous changes. The

high expense in trying to maintain a constant flow of updates as opposed to sending a

high complex mesh only once is not conducive to be used for this work.

 7

 Display lists provide a means by which to save recurring commands. Once saved,

the static list can be called at any time for execution. This method of caching commands

saves compiling and execution time as code is produced only once for use in multiple

areas or times. Small terrain sets could certainly be saved in a display list and sent to the

graphics card each time it needs to be rendered. However, large terrain sets could not be

handled by current memory busses all at once, and dynamic terrain would require more

storage as once display list per resolution per piece of terrain is required.

 One common technique in use for level of detail is alpha LOD, or alpha blending.

Alpha blending eliminates hysteresis by transitioning between to differing layers by way

of a gray image map. Basically, two images are superimposed along with the gray map,

which determines which of the images is displayed and how the two are blended together

for smooth image viewing. The only problem with the technique is that the image

transitions are visible to the user which disrupts the immersive game-play (Nyudens,

2001).

 Another technique is the notion of a progressive mesh. A progressive mesh

involves the storage of a mesh and differing representations for prioritizing the triangles

in the mesh from a very fine representation to very simple one (Hoppe, 1996). This

technique provides a stunning visual display when coupled with geometric morphing.

Unfortunately, the algorithm is very cost ineffective in terms of calculations and memory

usage. For instance, every vertex split and collapse needs to be saved. Another problem

involves the calculations required to determine which of numerous edges to collapse

should be the moving vertices converge to a single point in order to avoid sharp edges or

unwanted artifacts in the terrain.

3. Unreal Terrain

 The terrain rendering techniques developed by Epic do not use LOD techniques.

Instead, a pre-computed, single resolution terrain mesh is the final product rendered on

screen that is controlled through a quad tree structure for inclusion and exclusion of

pieces of terrain. In order to ensure smooth game-play, Epic limited its terrain resolution

size to 256 x 256. Accordingly, no degradation in performance was experienced in any of

Epic’s level designs. However, one goal of the AGP involved implementing large-scale

 8

maps (1024 x 1024) with 1-meter resolution. Thus the original terrain generation

algorithms proved to be inadequate for the AGP.

 Epic’s terrain rendering technique does not scale precisely because the entire

terrain is generated and rendered at a single resolution. Larger maps require the more

polygons, which requires more rendering time, which leads to a linear degradation in

rendering speeds. So, as map size increased, required rendering time increased and frame

rates decreased, which in turn degraded game-play.

 The primary reason that Epic did not include LOD in the original architecture was

because LOD was assumed to be slow. Basically, Epic assumed that swapping between

higher and lower resolution meshes would degrade the terrain display system enough to

disrupt interactive game-play. This led to Epic’s explicit limited map sizes.

 Despite the advances in graphics hardware terrain generation is still very software

dependent. The hardware does provide stunning graphical displays but not for dynamic,

view dependent triangle meshes and texture maps at required frame rates (Duchaineau,

1997). Since the target audience for Epic and the AGP uses standard desktop computers

with modern home commercial graphics cards and capabilities, the AGP must depend on

software in order to provide interactive frame rates.

4. Predictive Head Movement

Past studies regarding the elimination or reduction of the effects of system delays

for head mounted displays involved the use of prediction (Azuma, 1995). Expanding the

prediction idea for use in a first person, ground following environment proved very

appealing as a possible supplement for optimizing terrain generation. The basis for the

prediction model would be that users behave in a predictable manner, which could be

accurately modeled. The behavior modeled would be head turning frequency. If a user’s

propensity for head turning could be precisely modeled, an intelligent algorithm would

efficiently cache terrain for areas that the user would tend to turn most often towards and

exclude those areas least viewed.

Ron Azuma investigated the feasibility of prediction for reducing the effects of

system delays in head mounted displays (Azuma, 1995). A major portion of the study

involved predictors in the frequency domain. The idea involved transforming head

motion predictors into linear systems by which to adequately predict the motion of a

 9

user’s head in order to efficiently decide on what needed to be rendered. The study was a

success though not a panacea, as the results were very dependent on small prediction

intervals and linear systems only.

B. GAME TECHNOLOGY INTRODUCTION

 This section introduces the reader to specific terms and language associated with

commercial game technology. The underlying architecture for a game is a game engine.

Typical responsibilities of the game engine include graphics, network communications,

visibility calculations, etc. Game engines are typically not open to the public for general

use. Obtaining the source code for research, alterations, etc., requires a license from the

owner of the code. However, building upon a game engine without altering the

architecture is feasible through the use of modifications, or mods.

 A game engine in general is not modifiable without a license and/or source code,

but provides a layer of abstraction for reuse across different applications through mods

(DeBrine, 2000). A mod is an upper level program that interacts with a game engine for

upgrading or changing game-play or the game environment without changing the

underlying optimized architecture. Mods are akin to drivers that modify an operating

system to handle new behaviors without altering the operating system itself.

 Many commercial gaming companies develop their own script languages to

interact with the engine. The scripting languages, like mods, use the abstraction layer

provided by the engine for designing specific scenarios and game-play. Usually the script

language is more intuitive than languages such as C++ and provides easier access to

game functionality for the programmers. It also lessens the requirement for C++ builds

which, depending on the complexity of the engine, could be very time consuming.

C. RELATED WORK IN TERRAIN GENERATION

 Essentially, terrain generation algorithms must meet the following goal: render

realistic terrain in real-time for first person ground travel using minimal memory while

minimizing hysteresis in order to preserve interactive frame rates to ensure no

degradation in game-play for a user. This ideal was what drove many of the algorithms

that were reviewed as part of this work. A majority of the techniques generated

algorithms best suited for traveling above the terrain, such as flight simulators, with no

 10

objects or avatars in existence in that environment. With these restrictions, the algorithms

achieve the goal of real-time generation with relatively small memory footprints.

 These techniques are not suitable for the problem domain of this thesis. The

environment will contain buildings, trees, weapons, packs, vehicles, etc., as well as

avatars representing other users. The problem domain is based on a first person ground

perspective which many of the studied algorithms are not suited to handle. A major

difference between a fly-over simulation and a ground perspective simulation is that fly-

over simulations are not overly concerned with ground objects in the scene. For example,

from a ground perspective looking at buildings, if a lower resolution terrain leaves part of

the building over empty space, it will be very noticeable by the user. Whereas, a fly-over

most probably will never notice any difference as the user is always looking down at the

terrain and buildings without any chance of noticing the void below the building.

 The following sections review prior terrain generation algorithms to give the user

a clearer understanding of the problem domain. Then the merits of each topic are

discussed as to their suitability, or lack thereof, for this project.

 1. Triangular Irregular Networks

 Triangulated Irregular Networks, or TINs, is a terrain generation algorithm that

makes use of triangulated meshes to approximate surfaces for any desired level of

accuracy. TINs make use of the Delaunay criterion, which in part ensures that no other

vertex appears in the circumcircle of another vertex thereby avoiding sliver triangles, or

portions of the scene left exposed by the triangular mesh. Basically TINs maintain good

spacing between the set of points from a 2D height field map.

 "TINs allow variable spacing between vertices of the triangular mesh,

approximating a surface at any desired level of accuracy with fewer polygons than other

representations." (Lindstrom, 1996) Though it uses fewer polygons and does not suffer

from sliver triangles, TINs is not a fluid dynamic algorithm and its utilization does not

always eliminate hysteresis. For example, TINs manipulates height field maps to

eliminate triangles by approximating roughness and hidden details, which are

computationally expensive operations that slow the frame rate rendering time.

 Though TINs maintains good spacing, does not have slivers or gaps, and requires

few polygons to maintain accurate representations, it is not a suitable solution for this

 11

work. Part of the goal was for a very fast method for terrain LOD that provided

interactive frame rates for game-play. TINs are very computationally expensive in order

to maintain its good spacing and to determine the necessary amount of polygons to

eliminate slivers. These computations lead to slow terrain display, which lead to slower

frame rates.

 2. Quad Trees

 The concept behind the spatial subdivision technique of quad trees is to divide

and conquer. As illustrated in Figure 2 below, the basic idea is to continuously subdivide

the block into four smaller blocks until the desired level of detail is achieved, where

higher numbers of divisions equates to higher level of detail. A minimum level of

division is attainable since a block will not be divided if at least one of its children is not

radically different (different color) than any of its siblings, which would mean there is no

requirement for more detail. This simplification in conjunction with vertex removal

reduces the number of polygons to be rendered, provides smooth changes between levels

of detail, and provides dynamic generation in real-time.

Figure 2. Quad tree example. The overall block is subdivided evenly about regions that are dissimilar

providing a tree structure by which to quickly traverse active nodes while bypassing inactive ones.
Image by Peter Carbonetto, McGill University

 In Figure 2, the top image represents the original full terrain. The bottom image

represents two of the four quadrants in detail. Simply, as spatial blocks are broken down,

the nodes spawn the children. Each node is then assigned a color and status for simple

 12

manipulation. When the tree is traversed, if a top node is set to neutral, then its children

do not need to be visited.

 Though it is a faster algorithm than TINs, and does provide far more dynamic

interaction, the storage costs are significant. The main advantages of quad trees lie in the

speed with which they can be manipulated and accessed. For example, erasing a picture

done with quad trees is as simple as setting the root node to neutral (once one node is set

to neutral, its descendents are all classified as such for rendering purposes), which is a

simple manner in which to perform occlusion.

The Unreal engine accomplishes this dynamic interaction for its terrain generation

by culling any terrain outside of the viewing frustrum. If a node of the quadtree is not in

the field of view of the player it is simply not rendered. All of the terrain is maintained in

memory so that the culling and associated non-culling are seamless to the user.

 Peter Lindstrom et al. used the quad tree design in creating their algorithm

without the "problems" of TINs. The algorithm made use of continuous triangle binary

tree meshes to obtain high frame rates for large output meshes. The algorithm modeled

itself with the following criterion:

1. Direct query ability of the mesh geometry and the components that
describe it

2. Dynamic re-computation of surface parameters that does not effect
performance

3. High frequency data, such as localized concavities, should not have a
global effect on the model

4. Changes to viewing parameters should have a proportional effect on
the computations (i.e. small changes in the viewpoint should lead to
small reactions in the complexity), thereby maintaining a constant
frame rate.

5. Provide bounding for loss in image quality

As mentioned, Unreal does include a quad tree like method when it occludes

terrain not in the viewing frustrum. However, despite it being memory intensive, quad

trees could be introduced into the AGP for its terrain LOD display in some altered form.

One requirement is the addition of an algorithm to ensure seamless terrain display

because quad trees do not inherently check for gaps or slivers.

 13

 3. Real-time Optimally Adaptable Meshes

 Real-time Optimally Adapting Meshes, or ROAM, is a progressive terrain

generation algorithm that uses two priority queues and two optimization tools for

constructing triangulated terrain meshes (Duchaineau, 1997). The algorithm centers itself

on a split and merge strategy on binary tree triangle meshes without having to perform

the extra checks for sliver triangles or discontinuities (cracks) like TINs or quad trees.

 One key to ROAM is the use of a binary triangle tree structure, versus saving a

large array of triangle coordinates. This not only saves space, but also lends to the simple

manipulation of the mesh. In order to create a mesh approximation for a height field,

children are recursively-added to the tree until the desired level of detail has been

achieved. The more children present, the finer the detail for the area. Figure 3

demonstrates the splitting of a triangle. It follows that merging would simply be the

splitting procedure in reverse.

Figure 3. Splitting and merging of a triangle utilizing the ROAM algorithm.

 The two optimizations involve priority queues corresponding to the split and

merge steps. The idea for the split is to repeatedly do a forced split on the highest priority

triangle, with a single requirement that no child's priority is larger than its parent's. The

second queue for merging allows for a starting point at a previously optimal triangulation

to take advantage of frame-to-frame coherence when priorities change.

 14

 Overall, the algorithm makes good use of the ideas of occlusion and dynamic

rendering. In terms of the speed required for smooth scene transitioning, the algorithm

makes use of a time-out. That is, when a predetermined allotted frame time is about to

expire, triangulation optimization ceases, and the scene is rendered as is. Rarely does the

algorithm ever reach this time-out, but if/when it does the level of detail loss is very

miniscule. The loss is minimal because the algorithm optimizes the mesh closest to the

near clipping plane and so the non re-triangulated portion of the mesh is in the far

distance and will be missed by the viewer.

 The primary intent in the development of ROAM was to create a terrain

generation algorithm for large terrain sets for use in a flight simulator. The algorithm is

very computationally expensive. As explained earlier in this work, the differences

between fly-over simulations and ground simulations make the two very incompatible.

For these reasons, ROAM was not considered to be a viable solution for the requirements

of this work.

4. Terrain Paging

 Terrain paging is a technique that utilizes memory as a cache store for loading

sections of terrain in order to use large terrain sets in a simulation without the loss of

interactive frame rates. This technique bypasses the issue of terrain sets being too large to

store in memory all at once by managing transfers between the disk and memory, as

terrain is required. The NPSNET project at the Naval Postgraduate School made use of

terrain paging in order produce a “prototype 3D visual simulation systems across on

commercially available graphics workstations” (Falby, 1993). Included in this 3D visual

system is the requirement for large terrain sets on which multiple users could interact real

time across a network.

 In order to maintain realism while expanding the terrain set generated, NPSNET

stores bounded regions of terrain in memory, which are both visible and within close

proximity of the user’s position. When a user approaches the edge of a boundary, the

terrain in the opposite direction is freed from memory and the closer terrain data is paged

into memory. The bounding box was made larger than the terrain blocks in order to avoid

thrashing if a user were to continuously traverse between two different terrain sectors.

 15

 A quad tree structure supports the requirement for rapid culling of polygons

outside of the field of view of the user (Falby, 1993). It also supports the multiple

resolutions of terrain used. Though quad trees require extra memory for pointers, the gain

in only maintaining a small subset of high-resolution terrain data in memory far

outweighs the overhead necessary for an easily traversed and manipulated data structure

for large terrain data sets.

Figure 4. NPSNETV terrain paging. As the user approached the edge of his current bounding box,

the next box was loaded into memory ready to render when that terrain “came into view” of the user.
The 1200 x 1200 meter bounding block eliminates any possible thrashing that a user could cause by

continually moving back and forth across a boundary.

D. SUMMARY

 As stated, there exist many works that specifically address speeding up terrain

generation. Though all of the techniques discussed have relevant concepts that can apply

to this study, none alone answer the problem of expanding the Unreal engine to generate

large game maps.

 16

III. ARCHITECTURE & DESIGN
 This chapter details the architecture and design of the original process as created

for Epic’s terrain display system as well as the one designed for this work. First, Epic’s

architecture is discussed. Following is the LOD mesh design that served as the basis for

this work as discussed in detail in Chapter IV. Finally, the issues of scalability, mesh

swapping and predictive head frequency motion are discussed.

A. EPIC’S UNREAL TERRAIN ARCHITECTURE

 Epic’s terrain display system can be summarized with the following statement:

“Preprocess triangular meshes. Draw terrain until the level is exited.” Embedded within

those statements are steps such as reading from a heightfield, assigning alpha and texture

values, and terrain collision checks that lead to a highly interactive terrain set for game-

play.

 Figure 5 pictorially depicts the preprocessing of terrain by Unreal. A heightfield is

first read to associate appropriate (x, y) coordinates with elevations. The related textures

and alpha values are then added to the vertices. Triangulated meshes are created by sector

with the complete set of layers stored in memory for rendering during game-play. Also

assigned per sector is a bounding box that is used for quick culling via visibility tests.

During game-play, the terrain is continuously updated every frame. Figure 6,

shows the rendering processing beginning with the mesh creation. Prior to sending the

terrain to the viewport, visibility checks are performed to omit any terrain not in view.

Each sector’s bounding box is checked for visibility first. Then each layer is checked for

visibility. If a sector and layer are visible, it is sent to a rendering interface that will

finally render the terrain. Also included during the rendering of the terrain are various

checks for collision, blending and occlusion are performed at every game-tick.

 17

Figure 5. Heightfield converted to x,y coordinates with associated z values. The points are then
triangulated to create each layered mesh. The layers are then processed for final rendering.

 18

Figure 6. Terrain rendering process. Render process begins with the processing of the meshes. Then
continuously update the terrain at every frame checking for lights, collision and culling. When a level

or the game is exited, all references to the terrain are deleted and memory freed.
 The basis for the terrain is an Epic defined dynamic array. This “TArray”,

composed of another Epic defined class of terrain information

(FterrainSectorLAyerInfo), is where the entire terrain mesh is stored and kept in

memory during the runtime of each level. During the creation of the terrain, each triangle

vertex for each layer is assigned a z value, which is stored in the array whose index is

defined by an x and y coordinate. When the engine renders the terrain, the array is simply

traversed and read.

B. LEVEL OF DETAIL MESH DESIGN

 Triangle lists are the underlying foundation for the terrain. As portrayed in Figure

7, the terrain is simply a large set of identical triangle boxes laid down next to one

another. The entire terrain set is divided up into sectors with each sector made up of a 16

by 16 group of the triangle boxes. The challenge was to alter the existing mesh to include

LOD.

 19

Figure 7. Image of terrain triangle mesh. Left side is the high resolution configuration. Right side is
the LOD representation of the same area.

 The first step in the design was to determine the number of lower resolutions

required for the AGP. As discussed in detail in the implementation portion of this work, it

was determined that only one lower level of detail was required for the AGP. However,

as described in Chapter II, discrete LOD inherently incurs gaps and slivers in the terrain

mesh. In order to correct for the gaps, 13 stitching layers were defined to provide

seamless terrain from every angle. The stitching meshes were composed of high-

resolution triangle blocks with a row and/or column of stitching for alignment next to

lower resolution meshes in order to eliminate gaps. Figure 8 displays four of the stitching

meshes. Stitching is covered in detail in Chapter IV of this work.

C. SCALABILITY

 Scalability involves programming such that future modifications, alterations, or

additions would be both intuitive and simple. Because a goal of the AGP included maps

of varying sizes, scalability was an essential part of this work. Incorporating non-scalable

terrain LOD would have provided the same rigid constraints of the original terrain design,

and thus not be an asset available for the AGP to achieve its goals.

The basic concept encompasses incorporating terrain LOD such that an indefinite

number of LOD meshes are created in order to render vast map sizes without any

performance reductions. In order to make the work intuitive for use in future work, no

new architecture or design was invented. Rather, the existing terrain algorithm was

modified and increased in order to integrate scalable terrain LOD meshes. In this manner,

a very simple “recipe” was laid out that could be reproduced for any LOD.

 20

Figure 8. Stitching patterns. Four of the stitching images required ensuring seamless terrain from
any angle.

D. MESH SWAPPING

 As stated above, Unreal terrain involved the use of preprocessed meshes. Upon

execution of a level, a sector sized terrain mesh was computed then stored in memory for

use throughout game-play. During game-play, the sector sized mesh was rendered

numerous times to cover the entire map. The rendering of the mesh was performed at

every game time unit, thus another possible area for performance degradation.

Modification of this existing architecture was the primary work done.

 With terrain LOD incorporated, upon executing a level, the algorithm

preprocessed multiple meshes at differing LODs and saved those meshes in memory. The

LOD design implemented and integrated into the existing rendering algorithm was based

on distance between the player and terrain sectors. Thus the farther away from a sector

the player was a lower LOD sector mesh would be rendered for that specific sector.

E. PREDICTIVE SWAPPING AND PAGING

 In order to maintain a steady level of performance, predictive swapping and

terrain paging were investigated for possible incorporation. Predictive mesh swapping

would make the algorithm proactive versus reactive. Based upon work done by Azuma et

al., the underlying concept involved swapping the differing LOD meshes when it made

 21

sense to do so. For instance, if it were predicted that a player would only turn to the left

90 degrees during a certain time of a game, then until just prior to that point, only low

LOD meshes would be rendered on the players left side. This would prevent thrashing or

unnecessary swapping of sector meshes in case a player kept crossing over a distance

threshold to a specific sector. As discussed later in this work, the concept could be a very

important asset if it could be implemented.

 Terrain paging as discussed by Falby et al (Falby, 1993) and summarized above,

greatly benefits simulations that make use of large terrain sets. Though large terrain data

sets or maps are an option for the AGP, at the time of this work, the maps were not as

large as those used in the work done by Falby. As such, terrain paging in its entirety was

not included in this work.

F. SUMMARY

 This chapter detailed the architecture and design of the Unreal engine and this

work. As discussed, the Unreal architecture was kept in tact for this work with only

additions made in order to incorporate the terrain LOD. Chapter IV provides a detailed

summary of the implementation for the LOD system.

 22

IV. IMPLEMENTATION
 This chapter details the process taken to apply the terrain LOD design in the AGP.

First, a walk-thru of the structure of the required functions is discussed. That is followed

by a detailed explanation of the steps taken to produce terrain LOD.

A. FUNCTION WALK-THRU

 Epic makes use of numerous functions for its terrain generation algorithm to

include functions that initialize its layers, checks for collisions, reads heightfields, etc.

For this work, only two of the existing functions were modified to add terrain LOD, plus

the addition of one function to make the code more readable. All other functions were

optimized to handle the existing algorithm and the LOD technique implemented. The

functions are illustrated in Figure 9 with respect to their locations in the rendering

process.

The first function modified was UpdateVertexBuffer. This function is used

in the preprocessing of the terrain layers. Triangulation, texture and alpha associations,

and sector bounds are performed in this function. All LOD code was added immediately

after any high-resolution code. The center point of each sector was also calculated in this

function during each sectors initialization. Upon exiting this function, it is not called

again until a new level is loaded.

A new function, CheckTotalOccluder, was added to eliminate redundant

code that would have been added to UpdateVertexBuffer when the LOD portions

were added. The function checks each layer per sector to ensure it is not occluded. If it is

occluded, a false value is returned and that portion of the mesh is not triangulated for that

layer.

 23

Figure 9. Rendering process with functions.

 The other function altered to implement terrain LOD was Render. This

function is called every frame to send the appropriate terrain to the rendering engine.

Rendering determination is performed per sector down to each layer. Each sectors’

bounds are checked to ensure they are within the viewport. If they are within the

viewport, then each layer is checked for visibility. If visible, its attributes are sent to the

rendering engine. The LOD implementation added to this function involved checks for

distance and determining which mesh to render as is discussed in section D.

B. LAYER DECLARATION/INITIALIZATION

 The declaration of numerous different meshes was required to ensure seamless

terrain for the user from any angle or viewing point. A basic low-level resolution was the

first created, followed by all necessary stitching layers to account for gaps between low

and high resolution layers. Declarations were made in UnTerrain.h as seen in Figure

10. All remaining layer initialization and implementation was performed in

UnTerrain.cpp.

 24

E

a

t

t

C

v

l

F

l

u

// The basic low level resolution
TArray<FTerrainSectorLayerInfo> LowResLayers;

// All stitching layers
TArray<FTerrainSectorLayerInfo> TopLayer;
TArray<FTerrainSectorLayerInfo> BottomLayer;
TArray<FTerrainSectorLayerInfo> LeftLayer;
TArray<FTerrainSectorLayerInfo> RightLayer;
TArray<FTerrainSectorLayerInfo> TopRightLayer;
TArray<FTerrainSectorLayerInfo> TopLeftLayer;
TArray<FTerrainSectorLayerInfo> BottomRightLayer;
TArray<FTerrainSectorLayerInfo> BottomLeftLayer;
TArray<FTerrainSectorLayerInfo> SurroundTopLayer;
TArray<FTerrainSectorLayerInfo> SurroundRightLayer;
TArray<FTerrainSectorLayerInfo> SurroundBottomLayer;
TArray<FTerrainSectorLayerInfo> SurroundLeftLayer;
TArray<FTerrainSectorLayerInfo> Surround;

Figure 10. Declaration of layers for LOD.

very layer was initialized with high-resolution defaults, which included textures and

lphamaps. This was done to ensure proper matching between adjoining layers of the

errain images. The differences between the layers occurred during the triangulation of

he meshes.

. LEVEL OF DETAIL MESH CREATION

The method employed in the creation of the lower resolution layer was to skip

ertices during the triangulation, thereby reducing the overall polygon count. The chosen

ow resolution quadrupled the size of each individual higher resolution triangle block.

igure 11 shows both a high and low-resolution layer portion of a sector block, with the

eft image being the higher resolution.

Figure 11. Image comparison of low and high-resolution layer mesh. Left image is high resolution.

Determining the low resolution to use was based upon the size of the maps to be

sed and to ensure no drastic differences in a terrain’s configuration were made. First, the

 25

LOD can be scaled to any size terrain; the AGP’s large terrain maps are of a size that

makes using more than one LOD unnecessary. As such, creating more than one LOD

would require more memory for storage and include more frequent mesh swaps, which

would detrimentally invert any gain from using LOD.

 The other reason for using only one LOD was closely tied in with size of the maps

used for the AGP. Since the maps are not many miles in expanse, large mountains as

backdrops could have possibly been leveled if lower LOD’s had been implemented.

Figure 12 reveals a possibly outcome of using multiple LOD’s for mountain ranges

where peaks are very pronounced. By eliminating numerous vertices, which a very low

resolution would do, has the effect of flattening the peak. The effect is very pronounced

with LOD swaps. As the player approached the mountain, the perception would be that

the peak grows out of the flat hill.

Figure 12. Hill break down. Left image is high-resolution image of mountain peak. Right image is low

resolution where the peak is broken down completely due to its vertices being omitted.

Due to the differing heights in vertices, terrain without any stitching layers

exhibited gaps as are apparent in Figure 13. Stitching layers were created to compensate

for the varying heights of the vertices being rendered. Placing the appropriate stitching

layer next to the lower resolution layer as portrayed on the right side of Figure 12

eliminated all gaps producing seamless terrain.

 26

Figure 13. Gapped terrain. Left image is a non-stitched terrain which led to the center gapped image.

The far right image is a stitched terrain.

D. DISTANCE TO SECTOR

 The distance measurement for LOD swapping was measured from the viewpoint

to the center of each sector. First, a center point vector was added to UnTerrain.h as

in Figure 14. Second, the center points were initialized when the mesh was created and

was based on the bounds of each sector. Finally, the distance from the player viewpoint

and each sector was determined concurrently with the rendering of each sector. The

calculated distance determined the resolution of each sector to be rendered. A

predetermined distance was used to provide maximum terrain LOD by making only the

closest 9 sectors to the player eligible for rendering in high-resolution.

 One of the features in the AGP game-play is a zoom function. The zoom allows

the player enlarge areas of interest during game-play for closer inspection. Altering the

viewport field of view is how the zoom feature works. The terrain LOD algorithm had to

check against the current field of view in order to display only high-resolution terrain

whenever the zoom feature was activated. Otherwise, a zoomed in area in low-resolution

could have some unsettling effects, such as other avatars noticeably in some terrain where

from a distance it is not noticed.

 27

CenterPoint.X=0;
CenterPoint.Y=0;
CenterPoint.Z=0;
for (INT num = 0; num<8; num++){
 CenterPoint.X += Bounds[num].X;
 CenterPoint.Y += Bounds[num].Y;
 CenterPoint.Z += Bounds[num].Z;
}
CenterPoint.X/=8.;
CenterPoint.Y/=8.;
CenterPoint.Z/=8.;

// calculation done per sector
float distance = sqrt(powf(Sector->CenterPoint.X - currentX,2) +
 powf(Sector->CenterPoint.Y - currentY,2) +
 powf(Sector->CenterPoint.Z - currentZ,2));

Figure 14. Center point initialization and implementation.

E. MESH RENDERING DETERMINATION

 In order to eliminate redundant code and numerous function calls, a

TArray<FTerrainSectorLayerInfo> variable was declared to maintain the

determined resolution for rendering. The entire array was first initialized to low-

resolution and then updated every frame. The indices of the array corresponded to sector

number and were vital for determining when to select specific stitching meshes.

 Determining which layer to render was based upon the above mentioned distance

and sector array. The calculated distance was first compared against a predetermined

LODDistance constant to determine whether the sector should be high or low. If low,

its surrounding sectors were polled as to ascertain the appropriate mesh to render. For

example, the TopRightLayer stitching mesh was selected if the sectors to its top and

right were both low resolution.

Enum Choice { HIGH = 0, LOW, TOP, RIGHT, BOTTOM, LEFT, TOPRIGHT,
TOPLEFT, BOTTOMRIGHT, BOTTOMLEFT, SURROUNDTOP, SURROUNDRIGHT,
SURROUNDBOTTOM, SURROUNDLEFT };

Figure 15. Enumerated type for the determination of the layer to be rendered.

 28

if (SceneNode->Viewport->Actor->Pawn->ResolutionSwap) { // on/off switch for LOD for
testing
 if (distance > LODDistance)
 DrawResolution = Sector->ResolutionLevel = LOW;
 else if ((SecRes[CheckTop] == LOW) && (SecRes[CheckLeft] == LOW) &&
 SecRes[CheckRight] == LOW) && (SecRes[CheckBottom] == LOW))
 DrawResolution = Sector->ResolutionLevel = SURROUND;
 else if ((SecRes[CheckTop] == LOW) && (SecRes[CheckLeft] == LOW) &&
 SecRes[CheckRight] == LOW))
 DrawResolution = Sector->ResolutionLevel = SURROUNDTOP;
 else if ((SecRes[CheckTop] == LOW) && (SecRes[CheckRight] == LOW) &&
 (SecRes[CheckBottom] == LOW))
 DrawResolution = Sector->ResolutionLevel = SURROUNDRIGHT;
 else if ((SecRes[CheckRight] == LOW) && (SecRes[CheckBottom] == LOW) &&
 (SecRes[CheckLeft] == LOW))
 DrawResolution = Sector->ResolutionLevel = SURROUNDBOTTOM;
 else if ((SecRes[CheckBottom] == LOW) && (SecRes[CheckLeft] == LOW) &&
 (SecRes[CheckTop] == LOW))
 DrawResolution = Sector->ResolutionLevel = SURROUNDLEFT;
 else if (SecRes[CheckTop] == LOW) {
 if (SecRes[CheckRight] == LOW)
 DrawResolution = Sector->ResolutionLevel = TOPRIGHT;
 else if (SecRes[CheckLeft] == LOW)
 DrawResolution = Sector->ResolutionLevel = TOPLEFT;
 else DrawResolution = Sector->ResolutionLevel = TOP;
 } else if (SecRes[CheckBottom] == LOW) {
 if (SecRes[CheckRight] == LOW)
 DrawResolution = Sector->ResolutionLevel = BOTTOMRIGHT;
 else if (SecRes[CheckLeft] == LOW)
 DrawResolution = Sector->ResolutionLevel = BOTTOMLEFT;
 else DrawResolution = Sector->ResolutionLevel = BOTTOM;
 } else if (SecRes[CheckLeft] == LOW)
 DrawResolution = Sector->ResolutionLevel = LEFT;
 else if (SecRes[CheckRight] == LOW)
 DrawResolution = Sector->ResolutionLevel = RIGHT;
 else
 DrawResolution = Sector->ResolutionLevel = HIGH;
Figure 16. Distance check. Checks for resolution determination were based upon a calculated
distance and surrounding sector resolutions.

 29

switch (Sector->ResolutionLevel) {
case HIGH:

 RendSector = Sector->Layers;
 break;
 case LOW:
 RendSector = Sector->LowResLayers;
 break;
 case TOP:
 RendSector = Sector->TopLayer;
 break;
 case RIGHT:
 RendSector = Sector->RightLayer;
 break;
 case BOTTOM:
 RendSector = Sector->BottomLayer;
 break;
 case LEFT:
 RendSector = Sector->LeftLayer;
 break;
 case TOPRIGHT:
 RendSector = Sector->TopRightLayer;
 break;
 case TOPLEFT:
 RendSector = Sector->TopLeftLayer;
 break;
 case BOTTOMRIGHT:
 RendSector = Sector->BottomRightLayer;
 break;
 case BOTTOMLEFT:
 RendSector = Sector->BottomLeftLayer;
 break;
 case SURROUNDTOP:
 RendSector = Sector->SurroundTopLayer;
 break;
 case SURROUNDRIGHT:
 RendSector = Sector->SurroundRightLayer;
 break;
 case SURROUNDBOTTOM:
 RendSector = Sector->SurroundBottomLayer;
 break;
 case SURROUNDLEFT:
 RendSector = Sector->SurroundLeftLayer;
 break;
 case SURROUND:
 RendSector = Sector->Surround;
 break;
 default:
 continue;
}

Figure 17. Layer parsing selection. Once the appropriate mesh was selected, it was parsed and then
passed through to a function for rendering.

 30

F. ALPHA BLENDING

 Alpha blending is a method utilized to smoothly blend numerous textures

together. The alpha values are associated with each vertex in a terrain mesh. By only

using every other vertex in the triangle mesh for the lower resolution mesh and parts of

the stitching meshes, it was vital to choose the correct alpha blended vertices for smooth

uninterrupted terrain.

As Figure 18 reveals, choosing incorrect alpha vertices leads to gaps where there

originally was a blend between two textures. The open (white) areas represent what

should have been a smooth transition between a grass texture and a dirt texture. However,

since some of the vertices were skipped, some of the references for blending were also

omitted. The engine attempted to blend between all vertices whether chosen for the layer

or not. As such, when the engine tried to blend between an existent texture on a used

vertex and one that had been omitted, it defaulted to rendering nothing, or as in Figure 18

empty space. The correction was to ensure the engine only referenced vertices that were

in use to provide smooth blending as demonstrated in Figure 19.

Figure 18. Alpha blending problem. Left image is the terrain during game-play. Right image is the

same terrain in the terrain editing tool.

 31

Figure 19. Corrected alpha blend for smooth transitions between textures.

G. SUMMARY

 This chapter detailed the Unreal-specific implementation for this thesis. This

provides a firm basis for implementing a terrain LOD system in a similar engine type,

namely, for an engine that uses multi-layered displacement maps with quad trees.

 32

However, the ideas expressed in Chapters III and IV are valuable as a reference for

general terrain LOD systems. Contact the MOVES Institute (http://www.movesinstitute.org)

at the Naval Postgraduate for specifics or sample code. The following chapter provides an

analysis of the effectiveness, image quality and speed of this implementation.

 33

THIS PAGE INTENTIONALLY LEFT BLANK

 34

V. EXPERIMENTS AND ANALYSIS
 It was essential that the newly integrated terrain LOD system render the terrain

with at least the same quality as the original terrain system while also providing

interactive frame rates. Testing involved viewing numerous environments, with and

without the LOD activated, for visual display comparisons. All tests were run on a Dell

Dimension 4100, Pentium III 1 GHz machine with 512 MB RAM running an NVIDIA

GeForce 2 Graphics card with 32 MB of memory.

A. DETERMINING LOD DISTANCE

Determining the nominal distance to be stored in LODDistance was the first

task performed. Figure 20 provides a pictorial of the distance between the player’s

viewpoint and the center of a surrounding sector. In order to maximize the terrain LOD,

only the nearest nine sectors to the player could be eligible to be high resolution. The

nine include those occluded from the player’s viewport (e.g. sectors a, d, g, h, i in Figure

20) in order to compensate for rapid rotations during game-play. Figure 21 shows high-

resolution layers closest to the player with low resolution farther away. For game-play,

the optimal LODDistance was left to be determined by the level designers.

Figure 20. Distance to sector.

 35

Figure 21. Resolution layers.

B. IMAGE INTEGRITY

Testing the integrity of the images was performed via human eye. For the

purposes of this work, and for the intended goals of the AGP, it was determined that

passing a “human eye” test of programmers and artists was a success if they deemed no

significant or detrimental differences. Programmers, map designers and artists were

shown a series of terrains with LOD both active and non-active to determine the image

integrity of the LOD system. The terrains shown ranged from virtually flat terrain to very

rugged and complex terrain. All of the subjects were frequent gamers, very familiar with

current game technology and appearance.

The performed task was to ensure that there were no drastic differences between

high and low resolution meshes. Slight differences are of course inevitable, but generally

there should be very little visual difference. The first map tested was an open grassy

terrain with small hills, shown in Figure 22.

 36

BA

Figure 22. Open grassy map. The left image is non-LOD terrain. The right image is LOD terrain
with a 66% reduction in total triangle count. There is no noticeable difference between the two

images from this viewpoint.

From this viewing distance, Figure 22A was completely rendered in low resolution and

was indistinguishable from the high-resolution image in Figure 22B. Cutting the total

primitive count down by almost 100,000 triangles without noticeably altering the image

significantly improves the baseline for level designers. That is, level designers would no

longer have to limit the number of extra objects in a map because of the high primitive

count. The terrain LOD savings allow for larger, more intricate maps to be rendered with

acceptable frame rates.

 More intricate maps involving hills and fractured terrain were chosen to test

different aspects of the LOD algorithm. The first perspective was taken from ground level

looking down into a town with hills in the background as in Figure 23. There are slight

differences in the hill line to the right of the town of the integrity of the image is kept

intact. Again, a player would never know that the right image was not the original artist

created landscape.

 37

Figure 23. Hill resolution test. Left image is high resolution. Right image is high resolution close to
the viewpoint and low resolution LODDistance away.

 Figures 24 and 25 involved a map with less subtle hills and peaks but more

frequent ones. The perspective taken for Figure 24 images was above the terrain looking

down. No differences were noted. Figure 25 was from a ground perspective. The image

shows a slight difference along the face of the left hand cliff, as the low-resolution image

appears more rugged. Other views of this terrain as perceived by 6 artists and

programmers revealed harsher differences in the hills, but not so that the integrity of the

terrain model or images were damaged.

Figure 24. Fractured terrain test. Left image is high resolution. Right image is all low resolution.

 38

Figure 25. Close up of fractured terrain test. Left image is high resolution. Right image is high
resolution close to the viewpoint and low resolution LODDistance away.

 Just as the figures above revealed, there were subtle differences in the images

when rendered in either high or low resolution. As was expected, in flat terrains, none of

the programmers, map designers or artists noted any differences. However, as the maps

increased in complexity, differences were noted but none that were detrimental to the

images integrity. What was noteworthy about the subjects was that the programmers were

more sensitive to the differences than the artists that created the maps. In fact, two of the

artists did not perceive any differences until they were pointed out.

Figure 26. Aerial view of large map. The left image is LODDistance high resolution. The right
image uses the terrain LOD technique.

C. MESH TRANSITIONS

Ensuring smooth transitions when swapping between low and high-resolution

meshes was the next task tested. If hysteresis exists, immersion cannot possibly be

maintained, thus leading to a disruption in game-play. An almost entirely flat map was

 39

the first used to test for hysteresis. Navigating through the map depicted in Figure 27 with

LOD activated revealed absolutely no hysteresis. The welcomed results were expected

for a flat terrain. The real challenge involved navigating through fractured, hilly terrain

such as in Figure 25 above.

The map from Figure 25 was the next terrain used to test for hysteresis. As

expected, without geomorphing and with borders between varying resolutions near to the

viewpoint of the player, hysteresis was noticeable. In Figure 28, the highlighted portion

of the left image was still low resolution as it was approached. Once the LODDistance

Figure 27. Hysteresis test. Flat terrain revealed no hysteresis.

threshold was met, the highlighted area swapped to high resolution and resulted in the

right image. Though the difference was very slight, there was still a visible pop in that

portion of the scene. However, a player involved in a chase or combat probably would

not notice the change during game-play and not disrupt immersion. And thus, this slight

difference was accepted as an inevitable artifact of using terrain LOD.

Hysteresis is very distance sensitive. The closer the swap is to the near clipping

plane and thus the user’s view especially with highly complex terrain, the more

noticeable the swap. Conversely, the farther away the swap is from the user, the less

 40

noticeable the swap. As stated, for the purposes of game-play and to maintain

immersion, the LODDistance was determined per map by the map designer.

Figure 28. Apparent hysteresis. The left image showed a ridge low-resolution ridge being
approached. The right image is the resulted swap to high resolution. The highlighted areas were the

only differences noted as the entire hill was approached.

D. FRAME RATES

 Providing interactive frame rates through terrain LOD was a major goal of this

work. With all the image integrity and hysteresis questions answered, testing for

improved frame rates with LOD active was the next step. All tests were performed using

a single viewpoint. The images were projected full screen on the monitor to allow

maximum exposure.

The first map tested was the flat terrain from Figure 27 above. The observed

frame rate without LOD active was 55-56 frames per second (FPS). When LOD was

activated, the frame rate increased to 77-78 FPS, a 28% increase.

 The next map tested included objects and multiple textures as in Figure 29. For

the perspective taken in Figure 29, the observed non-LOD frame rates were 25-26 FPS.

With LOD active, the frame rates were 27-28 FPS. This increase was negligible despite

the number of rendered terrain primitives being reduced from 27,346 to 8,582 triangles.

The time to render the terrain decreased from 6.4 ms to 5.2 ms. The hypothesis entering

the test was that reducing the number of polygons rendered would increase frame rates.

This thesis failed that hypothesis in every case where the environment contained multiple

static meshes, decoration layers, and anything other than terrain. A possible reason for the

 41

lack of a more substantial increase was that the other complexities in the scene were

limiting the effects of the LOD system.

Figure 29. Frame rate test. No change in frame rate was observed between LOD and non-LOD
terrain.

 The overall statistics for the tested map showed decreases in total polygon count

though not as dramatic as the terrain counts alone. The total primitive count for the image

in Figure 29 without LOD active was 48,643 polygons. With LOD active it was 29, 879

polygons. The difference was completely due to the terrain. The time taken to draw all

primitives decreased in half from over 6 ms to just over 3 ms. A negligible increase in

frame rate in a level with complex objects as compared to the significant increase in

terrain only, or maps with very large terrain, suggested the terrain complexity had little

effect on frame rate. The following tests set out to prove that the terrain LOD system was

significant.

 Besides the first test that showed a 28% improvement, other tests with large

terrain sets were performed to measure the LOD’s performance. The same map that

showed no improvement was modified for the next test as in Figure 30. All objects were

 42

removed from the scene leaving only the large terrain set. Table 1 reveals the differences

between the active and non-active LOD statistics.

Figure 30. Modified map for testing. Map from Figure 29 with only terrain.

 Without LOD With LOD

FPS 39-40 49-50

Terrain polygons 8,406 25,650

Total polygons 11,376 28,626

Table 1. Modified map for testing. Map from Figure 29 with only terrain.

There was over a 10% increase in frame rates per second. Despite removing all of the

objects from the scene, there were still decoration layers and multiple textures associated

with the terrain that limited the increase to only being 10% as another map of the same

complexity and size with only one texture showed an increase in frame rate near 30%.

 A very large terrain map was created in order to saturate the graphics processor.

This was done to test whether the terrain LOD made any significant difference for frame

rates without any possibility of interfering factors. Figure 31 shows a ground perspective

view from the center of the terrain and an aerial view of the entire map. Table 2 contains

the statistics for the map.

 43

Figure 31. Large terrain map (km2).

Ground perspective Without LOD With LOD

FPS 4.642 8.862

Terrain polygons 511,616 129,320

Total polygons 513,344 131,044

Time to render 174 ms 99.7 ms

Aerial view Without LOD With LOD

FPS 1.372 2.326

Terrain polygons 2,093,058 522,242

Total polygons 2,094,792 523,970

Time to render 720 ms 405.2 ms

Table 2. Large terrain map (km2).

 The frame rate for the ground perspective was increased by 48% and the polygon

count was decreased by 75% with LOD active. The aerial view FPS increased by 41%

with a polygon decrease of almost 75%. These figures prove that the terrain LOD did

provide value in that it allows for larger terrain sets to be created without significantly

losing any frame rates. The time to render the terrain in both cases decreased over 40%.

E. SUMMARY

This chapter provided an analysis of the terrain LOD method implemented for this

work. Analysis of the information gathered supported that the implemented LOD system

 44

did provide for interactive frame rates, while allowing for more complex world

environments.

 45

THIS PAGE INTENTIONALLY LEFT BLANK

 46

VI. HEAD TURN FREQUENCY PREDICTABILITY
The ability to predict the turning frequency of a player in a first ground,

perspective environment would assist in refining a terrain LOD system. A prediction

algorithm would control the swaps between the different resolutions for areas such as

behind the player. Since the algorithm would know when the player would turn around,

the LOD swap would occur just prior to the turn. In this manner, the algorithm would

optimize the swapping of the different LOD’s. With this ability, level designers could

develop large outdoor scenarios, or overlapping regions where portals provide viewable

aspects of large-open terrain without any performance degradation. This chapter outlines

a study performed to ascertain whether turn frequency could be predicted in a first

person, ground perspective environment and thus refine not only terrain LOD, but also

terrain generation.

A. HYPOTHESIS

The hypothesis for the experiment was that with increased map size and difficulty

denoted by large unknown maps and enemy forces, the frequency for turning would be

higher and the time between large significant turns would be lower. Another underlying

hypothesis was that novice players would turn less as compared to experienced players,

exhibiting an “everything in my current view must be what is important” mentality. With

these two hypotheses, and with a possible trend in turn frequency and time, the idea was

that prediction could be possible for predictive terrain generation.

B. PREPARATION

The Unreal Tournament first person shooter game provided the appropriate

platform for the conduct of this study. Data collection involved the modification of only

one function and this process was completely transparent to the participants. All data was

stored in the game log until extracted by a Java program written specifically for this

experiment.

All participants performed the required tasks using the same Pentium 3, 1 GHz

machine equipped with a GeForce 3 graphics card with 64 MB of memory. The display

used was a Dell Trinitron 21 inch monitor. All users were provided with a mouse,

keyboard and headphones. The only difference in the equipment between individual

 47

players was that the participants were allowed to personalize the game controls prior to

the experiment.

C. EXPERIMENT

The experiment involved the playing of three different game situations for 10

minutes each in successive order with only about a brief two-minute break between each

session. The first game was a DeathMatch, which means that every entity in the world

attempts to eliminate all the other entities. The participant faced three combatants

controlled by artificial intelligence (AI), referred to as “bots” in the game. Figure 32

shows the map, “Morbias,” which was chosen because it is simple and easy to navigate.

There were limited weapon choices in the scenario, and a player’s health could not be

improved.

The second game provided a team element in the form of Capture the Flag. The

player had two bot teammates versus three bot opponents on the opposing team. The goal

of the game is for each team to capture the opposing team’s flag as often as possible.

Figure 33 demonstrates the “Command” map layout. There were the standard weapons

and health packs throughout the arena.

The third game was a more robust DeathMatch. The player faced eight bots in a

larger and more complex arena. Figure 34 shows the layout for “Tempest.” This map had

all available weapons and health packs.

Ten subjects were run through the experiment. All ten male participants were

volunteer students and programmers associated with the Naval Postgraduate School. A

brief questionnaire was administered followed by a game tutorial to establish a baseline

of game and computer experience of the participants. Appendix A contains the

questionnaire and associated data from all the questionnaires.

Each participant, regardless of experience, entered game play against bots set at

“Experienced.” On a scale of 1-8 with 1 being the easiest up to the hardest of 8, the bots

were rated at 3. This was to provide a challenge to those familiar with first person

shooters and Unreal specifically, without overwhelming those unfamiliar with Unreal or

first person shooter games in general.

 48

Figure 32. Deathmatch on map “Morbias”.

Figure 33. Capture the flag on map “Command”.

 49

Figure 34. Deathmatch on map “Tempest”.

D. RESULTS

A listener was placed to observe for drastic head turns each game click. The

drastic head turn was established to be 5 degrees in any direction. Every time the user

broke the threshold, the time and what was in the player’s field of view was recorded. All

entries were then automatically parsed using a Java program written specifically to parse

the collected data.

Though “Tempest” was very large and more intricate than the other maps, it

provided on average only 6.77% more turns than test 1 and 13% more than test 2. One

possible explanation for the insignificant differences was training. Thirty minutes of

game-play provided plenty of time for even novice players to become familiar with the

game-play style and controls, thus developing techniques that would minimize the

necessity for more frequent turns in test 3. One observation made from watching all the

participants was that as the experiment continued for each, the trend was for players to

search out an opponent and fight to the death and then continue searching for another

opponent in a straight ahead fashion.

Another explanation was that due to more opponents, the need for sweeping

searches was minimized. The hostile bots always sought out an enemy, and as observed

above, the participants also searched in a straight-ahead manner. This was most probably

 50

due to the confined areas of the map. The confining walls on the left and right of the

players’ avatar were visible and thus the player probably did not feel a need to look either

left or right. Perhaps with a more open terrain the requirement for more rapid sweeps

would have been more frequent and necessary.

With the exception of subject 1, regardless of experience level, the data indicates

no difference in the necessity for head turns between novice and experienced players.

Subject 1 provided the only case in support of the hypothesis that novice players would

tend to look straight ahead more frequently, avoiding head sweeps in fear of missing

something. All other players turned with regular frequency during game-play.

A significant note about the data was that almost 90% of the turns over threshold

were due to tracking an opponent during a battle. As advised during the tutorial, Unreal

bots exhibited the behaviors of a good deathmatch player. “A good deathmatch player is

always moving, because a moving target is harder to hit than a stationary one.” Unreal

bots constantly move to avoid being hit, and in order to kill them, the player also had to

turn in order to maintain that bot in the center of the players’ field of view. In this

manner, there was a predictive element in the turning frequency of the participants.

 An expectation stemming from conversations with first person shooter enthusiasts

was that players tended to make large and frequent head turns within very short amounts

of time. However, the average turn radius across all players was 7 degrees for either

direction during one game click. Though one participant did record a single turn of 180

degrees, the data supported a notion that players did not make rapid swooping turns

during game play. This revelation, along with the knowledge that players tended to track

bots during game-play could possibly provide a prediction algorithm.

E. SUMMARY OF EXPERIMENT

Though predictive terrain generation would significantly enhance the performance

of environments with large open areas, this study did not support its feasibility for a first

person, ground perspective environment. The experiment did reveal that once a player

was involved in a shootout with a bot, his turn frequency did become predictable since

they tended to follow the bot’s movement. And since a bot’s behavior was always

known, a prediction algorithm could tie into the bot’s behavior.

 51

 Though not conclusive, this study provided a good beginning for a possible

predictive terrain algorithm. With predictive head turning, not only can an efficient

terrain generation algorithm be developed, but more adept AI, game scenarios and

implicit game functions that can learn from a players’ tendencies could be developed to

create more immersive environments for entertainment and training. Clearly more in-

depth studies with greater variability in the subject population and interfaces need to be

performed.

F. SUMMARY

 This chapter detailed the experiment performed to ascertain the feasibility of head

turning frequency prediction as an intelligent terrain optimizing system. Chapter VII

provides final conclusions and areas of possible future work in this area.

 52

VII. CONCLUSIONS AND FUTURE WORK
 This chapter illustrates the benefits of the LOD system this work produced. A

summary of the work is followed by the benefits of this work and conclusions and

recommendations. This chapter concludes with ideas for future work.

A. CONCLUSIONS

This work set out to add terrain LOD to an existing first person, ground

perspective environment that dictated small terrain maps in order to maintain interactive

frame rates. Most first person, ground perspective simulations and environments set strict

constraints on the interaction that the user has with the terrain. Whether the restriction is

to maintain a distance from the terrain as in flight simulators, or restricting the movement

of the user to specific areas of the terrain map, the constraints are in place to maintain real

time interaction with the terrain.

A goal of the AGP was to develop large outdoor scenarios for their game-play. As

such, there existed a requirement to alter the current terrain algorithm to allow for high

interaction on the part of the user with large terrain sets. The developed terrain LOD

system provides an opportunity for endless interaction with the terrain on behalf of the

user by maintaining interactive frame rates.

Employing the existing terrain engine as a basis for the LOD system proved

intriguing and wearisome. First, the code was not very well documented. Discovering

where to begin by sifting through hundreds of files and thousands of lines of code took

time. Upon finding the terrain generation system, deciphering the system was equally

time consuming. To assist future developers, comments were added to the terrain system

in the process of this thesis.

A drawback of the existing system was that it limited the options for developing

an LOD system. As pointed out in previous chapters, because of its preprocessing of the

terrain, game-time manipulation of the terrain was impossible and thus very limiting.

However, reutilizing the existing code, which ran smoothly with the rest of the game

engine, was far more an attractive proposition than completing reengineering the terrain

system and its associations with the rest of the engine.

As expectations of realistic virtual environments grow, the requirement for real

time interactive systems will also grow. Vast, pristine terrain requires intelligent handling

 53

in order to ensure that the user can effectively interact with it to ensure maintaining

presence and immersion. An effective terrain LOD system, as the one provided in this

work is, provides for the construction of large terrain maps for use in first person, ground

perspective environments.

B. FUTURE WORK

 Though the LOD system developed for this work achieved its intended goals, it is

not a panacea for terrain LOD. There exist many other avenues for expansion and

improvement. This section will list some suggestions for future work.

 1. Game-time Terrain Manipulation

 Employing game-time terrain manipulation is one area for possible work. By

effectively altering and manipulating the terrain at game-time such as geomorphing, all

hysteresis could be avoided. The difficulty in implementing this scheme with Unreal is

that the entire terrain engine would have to be reengineered to eliminate preprocessing.

 2. Multiple LOD

 Because the maps used by the AGP were not vastly large, only one low-resolution

level was implemented for this thesis. However, should much larger maps be required,

more resolution levels would be required in order to maintain interactive frame rates. The

work would involve not only expanding the current number of stitches, but also to ensure

that the extra resolutions do not overwhelm the graphics memory.

 3. Head Turning Prediction

 Though the study presented in this work concluded that head-turning prediction

was nearly impossible, it was very limited in scope and experimentation. A possible area

of future work could be to expand that study to discover a means by which to implement

a predictive terrain algorithm based on a user’s tendencies.

 4. Limit Footprint
 This possible area of work follows the multiple LOD work for efficiently

utilizing the available graphics memory. As is, the current system keeps all the meshes in

the memory until required for rendering. Should multiple LOD meshes be implemented,

the burden on the memory could be overwhelming. Thus, efficiently caching the meshes

as terrain paging does or some other method could be explored in order to limit the strain

on memory.

 54

LIST OF REFERENCES

Azuma, R., & Bishop, G. (1995). A Frequency-Domain Analysis of Head Motion
Prediction, In Proceedings of SIGGRAPH 95, August 1995, pp 401-408.

DeBrine, J., & Morrow, E. (2000). Re-purposing Commercial Entertainment Software for
Military Use. Naval Postgraduate School Master of Science Thesis, September 2000.

Duchaineau, M., Wolinsky, M., Sigeti, D., Miller, M., Aldrich, C., & Mineev-Weinstein,
M. (1997). ROAMing Terrain: Real-time Optimally Adapting Meshes.

Falby, J., Zyda, M., Pratt, D., & Mackey, R. (1993). NPSNET Hierarchical Data
Structure for Real-Time, In Computer & Graphics, Vol. 17, No. 1, pp. 65-69.

Geomantics Ltd. Tutorial, Understanding and using Terrain Layers – I (2001).
http://www.geomantics.com/tutorials/tutorial2a.html

Hoppe, H. (1996). Progressive Meshes, In Proceedings of SIGGRAPH 96, August 1996,
pp 99-108.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N., & Turner, G. (1996).
Real-Time, Continuous Level of Detail Rendering of Height Fields, In Proceedings of
ACM SIGGRAPH 96, August 1996, pp. 109-118.

Nuydens, T. (2001). Level Of Detail (LOD).
http://www.delphi3d.net/articles/printarticle.php?article=lod.htm

Pike, J. (2000). Digital Terrain Elevation Data [DTED], Federation of American
Scientists. http://www.fas.org/irp/program/core/dted.htm

Reddy, M, & Iverson, L., (2000). GeoVRML 1.0 Recommended Practice, Web 3D
Consortium. http://www.geovrml.org/1.0/doc/concepts.html

Turner, B. (2000) Real-Time Dynamic Level of Detail Terrain Rendering with ROAM,
Gamasutra. URL: http://www.gamasutra.com/features/20000403/turner_01.htm

 55

THIS PAGE INTENTIONALLY LEFT BLANK

 56

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Research Assistant Professor Michael Capps
Code CS/Cm
Naval Postgraduate School
Monterey, CA

4. Professor Michael Zyda
Code MOVES
Naval Postgraduate School
Monterey, CA

5. Victor Spears
Code MOVES
Naval Postgraduate School
Monterey, CA

 57

	Terrain Level Of Detail In First Person-Ground Perspective Simulations
	N/A
	
	Victor L. Spears III
	B.S., United States Naval Academy, 1996

	Hysteresis is very distance sensitive. The closer
	FPS
	Ground perspective
	FPS
	Aerial view

